ks ‘02 International Conference

219

The 2002 Internationa! Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA'02)

Evaluating Task Redistribution Methods for Fault Clearing in
Multi-Agent Systems

Maryam S. Mirian, Majid Nili Ahmadabadi, Zainalabedin Navabi

Robotics and Al Lab, Dept. of Elect. and Comp. Eng., Faculty of Engineering, University of Tehran
Mirian_e@mehr2000.com mnili@ut.ac.ir navabi@ece.neu.edu

Abstract
Distributed hardware systems can be thought as teams
of distributed cooperative agents. This will encourage
the designers ro develop some new agent-based
techniques to increase systems’ fault tolerance.
Multi agent systems, similar to other distributed
Systems, are prone to failures. An important challenge
lo creating an effective and fimctional multi-agent
System is providing it with sufficient capabilities to
Operate properly and acceptably either in the case of
potential faults.
In this research, clearing faults by helping the faulty
agents in performing their tasks is considered. In
addition, some distributed decision-making methods are
introduced for each agent to decide if it can help the
Jaulty agents by undertaking their tasks in different
conditions. :
The developed methods are implemented in a simulated
Distributed Control System. The results Show the
effectiveness of the proposed distributed fault clearing
method, '

Keywords: Multi-agent system (MAS), Fault-Recovery,
Help Request, Task criticality.

1. Introduction

Traditionally, to have fault tolerant system, we can build
subsystems from redundant components placed in
parallel. Many fault-tolerant computer systems mirror
all operations, e.g., every operation is performed by two
or more duplicate systems, so if one fails the other can
take over [1].

Fault tolerant techniques used in traditional MAS is
limited to using agents as the backups of each other. In
other words, they use NMR (N-Modular Redundancy)
to achieve more robustness. In general, being modular
and acting totally independent of each other, makes it
possible to handle a fault in a MAS and isolate it, in
order not to produce an error or a failure at worst,

This paper discusses the use of the task performing
agents to help the others by reconfiguring their roles to
recover the lost capabilities. In the presented method,
there is no extra or central agent, sentinel or broker to
observe the agents and redistribute the tasks among the
agents to clear the fault. They also do not make a model
of each other. In fact the system is totally distributed
and each agent takes proper actions based on a designed
cooperation strategy to clear the fault. The presented
methods are tested on a simulated distributed hardware
system.

2. Related Works

Jennings showed that as the world becomes more
complex and variable and plans tend to fail more often,
teams as a whole waste fewer resources and are more
robust than self-interested agents [2]. Hugg uses
external sentinel agents to monitor inter-agent
communication, build models of other agents, and take
corrective actions [3]. The sentinel agents listen to all
broadcast communication, interact with other agents,
and use timers to detect agent crashes and
communication link failures. A sentinel agent copies the
world model of other agents and detects inconsistencies
by observing the behavior of other agents as well as its
own internal state. Klein proposes to use exception-
handling service to monitor the overall progress of a
multi-agent system [4]. Agents register a model of their
normative behavior with the exceptional-handling
service that generates sentinels to guard the possible
error modes.

The exception-handling services use a query and action
language to interact with the problem solving agents to
detect and diagnose faults and take corrective actions. A
social diagnosis approach is used by Kaminka and
Tambe wherein socially similar agents compare their
own state with the state of other agents for detecting
possible failure [S). An explicit teamwork model is used
for failure diagnosis. The agents use plan recognition
from observable actions as well as communication with

ERSA ‘02 International Conference

other agents to infer and construct a model of the other
agents. Decker, Sycara, and Williamson advocate the
use of caching by individual agents in systems that use
matchmakers to improve robustess in the face of
matchmaker failures [6]. They have also shown that
using load balancing by brokers in brokered systems
improves performance and hence provides a degree of
robustness from aggressive agents. In [7] the ability of
reorganization in the organizational leamning model to
maintain the collective performance of multiple robots
in terms of fault tolerance is discussed. The presented
method in this reference is not a solution for the real
time applications because of time-consuming process of
learning method and probably the high number of failed
tasks. A novel reconfiguration technique inspired from
mechanisms that take place during the embryonic
development of living beings is proposed in [8]. It
illustrates that the rapid low-level fault-recovery
characteristic of the embryonic system makes it a
promising approach for real-time control applications.

[9] solves the problem by a biological perspective
using the human immune system as a source of
inspiration. As described in [11], there are different
factors to be considered while one robot asked to help

the other, e.g. its distance form the faulty robot,
mechanical capabilities, expertness, current state and

criticality. In [10] the helping capability is added to the
Alliance architecture of Parker which was originally
described in [12). Inspired by [11}, in this paper, the
task performing agents are used to provide help for the
faulty one and there is no dedicated helper agent like a
broker, a matchmaker or even a sentinel. Since using
such solutions specifically dictates the presence of a
more powerful agent that is the single point of failure of
the system and in contradiction with the original goal of
fault tolerance. Using similar and normal agents with
the capability of help and taking different roles in fault
situations, provides a more general and reusable system.

Decision
Making

will
He
O\J
£

Help Request
I need

N
v !
-
-4

Figure 1: The Agents should contain normal
operations, Help procedure and decision making
capability. '

3. The Approach

Reconfiguring the roles of agents and their capabilities,
due to the requested type of help can be used for fault
recovery. The required features are shown in Figure 1
and described in details in this section.

3.1 What is each Agent’s Capability ?

" Each agent has some normal capabilities to perform its

assigned tasks. Besides, the agent has to know
something about the other agents and its environment.
In our task, which will be described later, arrival rate of
data, deadline of command submission, the criticality of
tasks compose the primary knowledge of the agents. It
is also assumed that each agent is capable of doing the
others tasks.

3.2 What is the Content of Help Request?

The main problem is that the help request must be as
short as possible and contains the required information,
such as agent’ ID and type of help request. In this paper
just the ID of the faulty agent is communicated. If the
damage is so severe, that the agent cannot send a help
request containing type of help needed, the other agents
looking at the common bus, will detect the ID of the
faulty agent and try to help.

3.3 Who will Receive the Help Request?

If the faulty agent does not know who can help, it can
just broadcast a message to call the others for help. So if
the criticality of agents’ tasks is known, other agents try
to help, as they should do. Otherwise they may look at
their own capabilities and decide according to decision-
making criteria. More details of the testbed will be
discussed in the coming section.

4. Our Testbed

In order to justify the developed ideas, we designed a
test bed similar to a typical distributed control system. It
contains a frame generator that produces the normal
data for the agents and put it on the bus. These data may
be extracted from the sensors in the environment.

These structurally similar but behaviorally different
agents gather their own data from the bus and after
computing the desired commands; they send them out
on the other bus. These commands can control the other
subsystems out of this environment. One fault generator
is put in the system in order to simulate random faults
for each agent during simulation. All system

i

ERSA 02 International Conference

221

components must be active in parallel simultaneously.
Considering these requirements and the possibility of
testing the developed ideas in a hardware system,
VHDL simulation was performed [13]). The time
resolution of this simulation is as tiny as nano seconds.
Describing the agents in a high level behavioral model,
enables us to take advantages of the strong features of
VHDL like concurrency aspects, design hierarchy,
timing control in all levels and many other benefits. We
have done four different experiments on this system,
which are described below.

5. Introduced approaches and Simulation
Results

First of all, the test scenario, which is applied to all the
experiments, is described and the health status of the
agents is shown in Figure 2.

Agemt
lok| 2272277 oK OK OK oxoxold zzzzzz2z222Z | OK OKOKOK |
enQ

OKOK| 22222222] OK OK OK OKDKOK OK OK OK GKOKOK |
AgenQ

[o ok oKOK Jz22222772222722 22222722

| OK OK OK OKOKOK |

Figure 2: The Test Scenario used for all Experiments

Test Scenario : Agent 1 becomes faulty at 700 NS and
becomes healthy at 3000 NS. While Agent 1 is faulty
Agent 2 becomes faulty too at 2000 NS and comes back
at 6000 NS. Agent 3 is ok since 4000 NS. It fails at this
moment. It takes until 10000NS. Agent] again at 8000
NS becomes faulty and comes back at 11000 NS.
Finally at 11000 NS, all the agents are healthy and
continue their normal operations.

5.1 Helping Strategy based on the Agents’
Criticality

In this experiment, the agents’ tasks are assigned some
predefined levels of criticality. Therefore, when one
agent requests for help, there are some particular agents
obliged to help in a predefined manner. The behavior of
the agents is described below:

Agent I: Performing the Most Critical Task. Never
gives up its own task to help any other agent.

Agent 2: Performing the Middle Critical Task. It only
helps Agent 1 if it needs help and Agent 3 is faulty. It
helps Agent 3 if Agent 1 does not need help.

Agent 3: Performing the Least Critical Task. It helps
Agent | and Agent 2 whenever they request. It may give
up its task while helping the two more important agents.

What will happen in this experiment?

The most critical agent, Agent 1, becomes faulty and
requests for help. Agent 3 starts to help it. It will do its
own task while helping Agent 1. After a few .nano
seconds, Agent 2 becomes faulty too. Now Agent 3
must help Agent 2 too. So it is to give up its task and
just perform the most critical tasks of the system
without which system will surely fail. After a few more
nano seconds, Agent 3 fails and since Agent 2 is faulty
too, no one helps them. When Agent 2 comes back it
helps Agent 3. But when it understands that Agent 1
needs help it stops helping Agent 3. Finally all the
agents came back to the fault free states and continue
their normal actions.

Figure 3 shows the internal states of the agents in this
experiment. Table | and Table 2 demonstrate the
simulation results with and without help mechanism
respectively. It is worth mentioning that in this
experiment, tasks may be lost due to two different
reasons: either helping others and losing own task or not
being helped by the others.

In order to evaluate this method and the other strategies
introduced in this paper, a simple performance index, is
considered:

Performance = Z N.C,
i

Where N, is the number of times agnet i ‘s task is done

successfully, and C; is the criticality of agents’s task.

According to Table 1, Table 2 and the above definition,
the performance of the system without the helping
capability is 59%, while the performance of the new
system with the fixed-criticality-based help is 80%.

Agent | Number of | Total Number
Lost tasks of tasks to be
due to Fault done
1 43 85
2 26 97
3 45 103

Table 1: Simulation Result when there is no help
mechanism in the system applying the test scenario.

ERSA ‘02 International Conference

Agent]_Faulp |
My Nomal |Start f“g’ MyNomal My Nomal MyNomal MyNomal My Nomal
Tak |Heb Me | Task Task Task Tesk Task
I 7 1
. Stop ™ 5]
MyNomal | My Nomal | Stat MyNomal | 2| My Nomal Task [Z & My Nomal
Task Tak | WP NPl Tek |8 8aAgen3Taxk § Task
Agent3 F -
My Normal %'- Agentl Task & 3‘3 Stop AgentLTask&g. ldgan Agent2 Task ¢ ‘% My Normal Sl_:att — Hgg My Normal
Task I§ My Nomal Task| 8 8IVY, | Agend Tosdes® My Normal Task| So] Task |Hipk Mo | Task

Figure 3: Internal states of the agents in the strategy based on the Agents’ Criticality (No Decision Making).

Agent Number of Number Number of Total Number
] Criticality Number of Successfully | of Tasks | Tasks helped of tasks to be Fault Duration
4 Lost Tasks done Tasks done by by Others performed
: Itself
1 3 5 80 46 34 85 5300 NS
2 27 70 61 9 97 6000 NS
3 i 63 40 29 1 103 4000 NS

Table 2: Simulation Result when the agents help others with the fixed criticality based method.

Agenti_F. l
‘ o
MyN tart Stop | My Nomal| Decisior} | can|Start Held Agent3 Task & {Agentd | My Nomal My Normal
Task Mo Z2ZZZZI7Z2Z228 s Md Task |Making [Help | Agert3 | MyTask |isFine| Task Task
Agent2_| 7\
My Normbl | Decisior{ | can | Agent1 Task &f Agentl] myN Decision|l cant| MyNomal MyNomfal MyNomal My Nomal
|T“k Making | Help | My Task sFine | g |[\Making[Hel | Task Tas Task Task

Agemsfa&y \ |/

My Nomal| Decisior] | can] My Normal MyNamal MyNomal [Stat | | Stop | MyNomal My Noma
Task | Making Help | " Task Task Task Help M HepMe| Task Task

Figure 4: Internal states of the agents in Decision-Making based Methods (Last T} hree Experiments)

Number of Number of Number of Total Number Fault
; Agent Criticality Number of Successfully Tasks done by Tasks helped of tasks to be Duration
‘ Lost Tasks done Tasks Teself by Others performed
1 1 11 74 45 29 85 5300 NS
‘ 2 1 10 87 57 30 97 6000 NS
3 1 24 79 45 34 103 4000 NS

Table 3: Simulation Results when the agents help others with a decision- making based on Remaining Time.

‘02 International Conference

223

5.2 Decision-Making for Help based on Remaining
Time

In this experiment, the principal assumption is that the
task completion of each agent has the same degree of
importance for the total system and no criticality is
specified in the design time. Therefore the agents must
decide in the run time whether to help or not and if they
should help which one to be helped first in the case of
more than one faulty agent in the system. So, the agents
are given some level of knowledge about the timing
constraints of the other agents and also their own
limitations that must be considered while deciding to
help. The agents’ internal states during this experiment
are shown in Figure 4,
Each agent while receives a help request, looks if it can
help. The parameters it considers are:
1) My_Task_Completion_Time (Its own task completion
time): This parameter is float according to the sensory
input data. The reason is that the required processing
time depends on the input information. This will enable
the agents to decide more dynamically.
2) Agent_I_Task_Completion_Time (The maximum time
required to compute the task of agent I on the helper's
processor.) This is a part of the knowledge of one agent
about the others.
3) Available_Time (The remaining time until the next
data comes in): This time parameter limits the agent to
complete its current task during a period of time. If the
current task is not completed in this interval of time, it
will be assigned a new task and the previous one will be
lost and overwritten.
In general, when one agent receives two Help Requests
from Agent i and Agent j , it will try to decide
according to this inequality:
Available_Time
>
My_Task_Completion_Time
+
Agent_i_Task_Completion_Time
+
Agent_j Task_Completion_Time
If this inequality can not be satisfied, the agent will
think if it can help to just one of them:
Current_Task_Time_Available

My T ask_Co;pIetion__Time
Agent_i T ask__gompletion_ Time
> Current_Task_Time_Available
My_Task_C or:pletion_Time
+

Agent_j Task_Completion_Time

If both of these inequalities can be satisfied, the helper
agent will help the agent with a longer task completion
time. Choosing this task to perform, it will be more
probable that the other agents can help the remaining
faulty agent. Otherwise, if none of the agents can be
helped, the agent ignores the help request and just
completes its own task. It is worth mentioning that in
such a case, the faulty agent may be helped later since
as described before My_Task_Completion_Time is not
fixed and when it shortens gives the agent the
opportunity to help.

In this experiment, we expect that only the faulty agent
may lose tasks if and only if the other agents do not help
it. In other words, no healthy agent may lose its own
task any more because of helping others. This fact is the
actual reason of high loss of tasks in the previous
experiment.

The performance evaluation according to the given
performance index, results in 4% improvement in
comparison with the system uses fixed-criticality-based
method (shown in Table 2). Besides, The number of lost
tasks decreases from 33% to 15%.

5.3 Risking to Provide Help Using First Come First
Served Strategy

In this experiment, agents have no pre-knowledge from
the coming rate of their own data and they are unable to
make a time-based decision, so they use the policy of
First Come First Served and actually they risk providing
help. :

If the Frame Generator produces packets with different
rate for each agent, the described situation will be
simulated practically. To make the policy more clear,
here is a scenario: If Agent 3 has to help Agent I and
Agent 2, it first completes its own task and if its new
data has not come in yet, it starts to help to the agent
whose request for help has came before the other. When
did it, if the help request from the other agent remains
active and it has not been expired yet, it will help that
agent.

Here the acquired performance is 75%. The simulation
results of this experiment are shown in Table 4.

5.4 Risking to Provide Help Using Shortest Job First
Strategy

In this experiment like the previous one, agents have no
estimation of their remaining time, so they have to
consider other parameters in their decision-making.
Here they consider the amount of time required for
completing one task and select the first agent to be
helped. For example if Agent | has to help Agent 2 and
Agent 3, it does this scenario: First does its own task
and then starts to help Agent 3 since its task is shorter
for it to do than that of Agent 2.

x-'224

ERSA ‘02 International Conference

Agent Criticality Number of Number of Number Number of Total Number
Lost Tasks Successfully | of Tasks | Tasks helped of tasks to be Fault Duration
done Tasks done by by Others performed
Itself
1 1 18 67 44 23 85 5300 NS -
2 1 23 74 60 14 97 6000 NS
3 1 30 73 42 31 103 4000 NS

Table 4: Simulation Result when the agents help others with the First Come First Served Strategy.

Agent Criticality Number of Number of Number of Number of Total Number | Fault Duration
Lost Tasks Successfully | Tasksdoneby | Tasks helped of tasks to be
done Tasks Itself by Others performed
1 1 14 71 47 24 85 5300 NS
2 1 23 74 59 15 97 6000 NS
3 1 32 71 42 29 103 4000 NS

Table 5: Simulation Result when the agents help others with the Shortest Job First Strategy.

Decision- Decision-
Strategies Without help | Fixed criticality | Decision Making | making based Making based
based based on on First Come | on Shortest Job
Remaining Time First Served First
Performance 59% 80% 84% 75% 76%
Lost Tasks 40% 33% 15% 24% 23%

Table 6: Evaluating four presented strategies

When it is completed, if the help request from Agent 2
remains active and the expiration time of the task is not
reached, it starts helping.

The time takes for one agent to complete the task of
another agent is assumed to be agent-dependent, It
means since one agent completes the task of another
agent by its own capabilities, it depends on its processor
and internal resources and may be different from the
time another agent spends to do the same task. The
performance of the system using this strategy is
computed as 76%. There is no considerable
improvement in comparison with First Come First
Served strategy, since both of them risks for help and
there is no guarantee that they will not miss their own
data while providing help. The detailed simulation
results of this experiment are shown in the Table 5.

Considering all these strategies, Table 6 summarizes the
results. It shows that as the method becomes more
flexible, the number of lost tasks decreases and the
performance increases considerably. It also shows that if
the agents are aware of the remaining time and take a
time-based decision, they are more successful. This

strategy is not impractical because in most of the real
control applications, the rate of sensory input data for
each agent is not unpredictable and is a primary
knowledge for them, so they can count on it and take a
more accurate decision.

6. Conclusions and Future Works

These experiments show that using a more complete
decision making mechanism is necessary. In this system
and any other multi agent system, which is designed to
utilize the help capability, the designer has to consider
different parameters to make a powerful activation
function for help processing. Using a fixed criticality-
based method and obliging the agents to help under
fault conditions regardless of their own time and
capability constraints is not proper for some
applications. Risking and starting an action with the
hope of success, may be neither practical nor wise
unless help provision is the primary goal of the designer
under any situation.

In our future research, we intend to study some more
effective decision-making method for the agents to
process the help request.

| ‘02 International Conference 225

Implementing the introduced methods on FPGA-based [13] Zainalabedin Navabi, Analysis and Modeling of Digital
distributed system is the next step of this study. Systems, McGraw Hill, Second Edition, 1998

7. References

{1} Bary Johnson, Design and Analysis of Fault Tolerant
Digital Systems, Adison Wesely, 1989

[2] N. R. Jennings, “Controlling Cooperative Problem
Solving in Industrial Multi-Agent Systems using Joint
Intentions™, Artificial Intelligenc 75(2), pages 195-240, 1995.

{3] S. Hugg, “A Sentinel Approach to Fault Handling in
Multi-Agent Systems”, Proceedings of the 2nd Australian
Workshop on Distributed AI, Caims, Australia, 1997,

f4] M. Klein and C. Dellarocas, “Exception Handling in
Agent Systems”, Autonomous Agents ‘99, Seattle, 1999.

[} G. A. Kaminka and M. Tambe, “What is Wrong With
Us? Improving Robustness Through Social Diagnosis™,
Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), 1998.

[6] K. Decker, K. Sycara, and M. Williamson. Matchmaking
and Brokering. Proceedings of the Second International
Conference on Multi-Agent Systems (ICMAS-96), Dec-96.

[7] Hitomi Kasahara, Keiki Takadama, Shinichi Nakasuka,
Katsunori Shimohara, Fault Tolerance in a Multiple Robots

Organization Based on Organizational Learning Model,
IEEE-SMC’98

{8] Cesar Ortega and Andy Tyrrell, “Biologically Inspired
Fault-Tolerant Architectures for real-time Control
Applications”, Control Engineering Practice, pp. 673-678,
July 1999.

[9] D.W.Bradley and A. M. Tyrrell, “The Architecture for a
Hardware Immune System”,

(10} Foad Ghaderi, Majid Nili, “Fault-Tolerance in
Cooperative Robots Using others’ Helps”, Accepted in 7"
Computer Conference of Iran 2002.

[11]JMajid Nili Ahmadabadi, Foad Ghader,
“Distributed Cooperative Fault Tolerance In A Team Of

Object Lifting Robots”, Submitted to IR0S2002,
May2002

{12] L. E. Parker, “ALLIANCE: An Architecture for Fault
tolerant Multirobot Cooperation”, JEEE Trasaction on
robotics and automation, vol. 14, No. 2, pp. 220-240, April
1998

