
'02 Internstional

The 2002 International conference on Engineering of Reconfigurabte systems and Algorithms (ERSA,o2)

Evaluating Task Redistribution Methods for Fault clearing in
Multi-Agent Systems

Maryam s. Mirian, Majid Nili Ahmadabadi, zainalabedin Navabi

Robotics and AI Lab, Dept.:IEl:ct. and Comp. 
!1g., Facula of Engineering, (Jniversity of TehranMir i a n _e @Vt e h r 2 0 0 0. c o m m n i I i @u t. a c. i,' n i _ t'ig," u. n eu. e dtt

2t9

Abstract
Distributed hqrdwqre systen s can be thought as teams
of distribaed cooperative agents. fhis wit encourage
the designers b develop some neu, agent_based
techniques to increas e systems, faul t tol erani.
Multi agent systems, similar to other distributed
systems, qre prone to failures. An imponant challenge
to creating an efective and functionat mutti-agint
system is providing it with suficient capabilities to
operak properly and acceptabty either in the case of
potential faults.
In this research, clearing faults by helping the faultyagents in performing their tasks ts constdered. in
addition, some distributed decision_making methods are
introduced for each agent to decide tf il can help the
faulty agents by undertadng their iaslcs in diferent
conditions.
The developed metho& are implemented in a simulated
Distributed Controt Syst"m. The results show the
efe2tivyess of the proposed distributed fautt ctearing
method.

{T":!t 
Mu!1i-yent system (M4S), Fmttt-Recovery,

rretp l<equ6; Task criticality.

l.Inhoduction

Traditionally, to have fault tolerant systenr" we can build
subsystems from redund*t "o*iooenis placed in
parallel. Many fault-tolerant comput". ,yrt"r. mirror
all operations, e.g., every operation is periormed by two
or more duplicate systems, so if one fails the other can
take over Il].
Fau.lt tolerant techniques used in traditional MAS is
Ilmlted to using agents as the backups of each other. In
other words, they use NMR (N-Moiular Redundancy)
to achieve morc robustncss. In general, being modular
and acting totally independent oleach'other]makes it
possible to handlc a fault in a MAS and isolate it, in
order not to producc an crror or a failure at worst.

This paper discusses the use of the task performing
agents to heip the others by reconfiguring tbiir roles tor€cover the lost capabilities. In thJpresinted method,
there is no extra or cental agent, sentinel or broker to
observe the agents and rcdistribute the tasks arnong theagents to clear the fault. They also do not make a model
of each other. In fact the system is totally disnibuted
and each.agent takes proper actions based on a designed
cooperation strategy to clear the fault. The presented
methods are tested on a simulated distributed hardware
system.

2. Releted Works

Jennings showed that as the wortd becomes more
complex and variable and plans tend to fail more often,
teams as a whole waste fewer resources and are more
robust than self-interested agenB [2]. Hugg uses
external 

- sentinel agents to monitor inter_agent
communication, build models of other agents, and take
corrcctivc actions [3]. The sentinel agents listen to att
broadcast communication, interact ,]tn ott ", ageuts,
and use timers to detect agent crashes and
communication link failures. A sentinel agent lopies the
world model of other agents and detects irconsistencies
by observing the behavior of other agens as well as its
own intemal state. Klcjn proposes t *" exception_
handling service to monitor the overall progr"ss of "
multi-agent bystem [4]. Agents register a mod-el of their
normative behavior with. the exceptional_handling
service that generates sentinels to guard the possible
error modes.
The cxccption-handling services use a query and action
language to interact with the problem ,otuing ug"or, ,o
detect and diagnose faults andtake conectiv;ctions. Asocial diagnosis approach is used by Karninka and
Tambe wherein socially similar "g"nt, "ornpire their
own state with the state of other agents for detecting
possible failure [5]. An explicit teamwork model is used
for failure diagnosis. The agents use plan recognition
from observable actions as well as communication with
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other agents to infer and cotrstruct a model of the other

agents. Decker, Sycara, and Williamson advocate the

uie of caching by individual agents in systems that use

matchmakers to improve robustness in the face of

matchmaker failures [6]' They have also shown that

using load balancing by brokers in brokered systems

improves performance and hence provides a degrce of

,ob*to".t from aggressive agents. In [7] the ability of

reorganization in the organizational leaming model to

maintain the collective performance of multiple robots

in terms of fault tolerance is discussed' Tbe presented

method in this reference is not a solution for the real

time applications because of time-consuming proccss of

learnini method and probably the higb number of failed

tasks. A novel reconfiguation tecbnique inspired from

mechanisms that take place during the embryonic

development of living beings is proposed-in t8l' It

illustrates that the rapid low-level fault-recovery
characteristic of the embryonic system makes it a

promising approach for real-time control applications'

igl sotves the problem by a biological perspective

using the human irrunune system as a source of

inspiration. As described in U ll, there are different

factors to be considered while one robot asked to help

the other, e.g. its distance form the faulty robot'

mechanical capabilities, experttress, current state and

criticality. In [t0] the helping capability is added to tbe

Alliance architecture of Parker which was originally

described in tl2l. Inspired by [ll], in this paper, the

task perfomring agents are used to prwide hclp for the

faulty one and there is no dedicated helper agent like a

broker, a matchmaker or even a sentinel' Since using

such solutions specifically dictates thc prescnce of a

more powerful atent that is the single point of failure of

the system and in contradiction with the original goal of

fault tolerance. Using sirnilar and normal agents with

the capability of help and taking different roles in fault

situations, provides a more general and reusable system'

o
f

./l- |

Figure l: The Agents should contain normal

operations, Help procedure and decision making

capability.

3. The Approach

Reconfiguring the roles of agents and their capabilities,
due to the requested type of help can be used for fault

recovery. The required features are shown in Figure I

and described in details in this section.

3.1 What is each Agent's Capability ?
' 

Each agent has some normal capabilities to perform its

assigned tasks. Besides, the agent has to know

something about the other agents and its environmcnt'
In our tastq which will be described later, arrivat rate of

data, deadline of command submission, the criticality of

tasks compose the primary knowledge of the agents' It

is also assumed that each agent is capable of doing the

others tasks.

3.2 What is the Content of Help Request?

The main problem is that the help request must be as

short as possible and contains the required information,
such as agcnt' ID and type ofhelp requcst. In this paper
just the ID of the faulty agent is communicated' If the

lar"g. is so severe, that the agent cannot send a help

rcquest containing type of help needed, thc othcr agcnts

looking at the common bus, will detect the lD of the

faulty agent and trY to helP.

33 Who will Receive the Help Request?

If the faulty ageut does not know wbo can help, it cau
just broadcast a message to call the others for help' So if

thc criticality of agents'tasks is known, other agents try

to help, as they should do. Otherwise they may look at

their own capabilities and decide according to decision-

making criteria. More details of the testbed will be

discussed in the coming section.

4. Our Testbed

ln order to justiff the developed ideas, we designed a

test bed similar to a qpical distributed control system' It

contains a frame generator that produces the normal

data for the agents and put it on the bus. These data rnay

be extracted from the sensors in the environment'
These structurally similar but behaviorally different
agents gather their own data from thc bus and after

computing the desired comrnands; they send them out

on the other bus. These commands can control the other

subsystems out of this environment. One fault generator

is put in the system in order to simulate random faults

for each agent during simulation. All system
Agenll



components must be active in parallel simultaneously.
Considering these requirements and the possibility of
testing the developed ideas in a hardware system,
VHDL simulation was perfonned [13]. Thc time
resolution of this simulation is as tiny as nano seconds.
Describing the agents in a high level behavioral model,
enables us to trke advantagcs of the strong features of
VHDL like concurrency aspects, desip hierarchy,
timing control in all levels and many other benefits. We
have done four different experimenb on this system,
which are described below.

5. Introduced approaches and Simulation
Results

First of all, the test scenario, which is applied to all the
experiments, is described and the health status of the
agents is shown in Figure 2.
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Figure 2: The Test Scenario usedfor all Experiments

Test Sccnario : Agent I becomes faulty at 700 NS and
becomes healthy at 3000 NS. While Agent I is faulty
Agent 2 becomes faulty too at 2000 NS and comes back
at 6000 NS. Agcnt 3 is ok since 4000 NS. It fails at this
momeut. It takes until 10000NS. Agent I again at 8000
NS becomes faulty and comes back at 11000 NS.
Finally at 11000 NS, all the agents are healthy and
continue their norrnal operations.

5.1 Helping Stretegy based on the Agents'
Criticality

In this experiment, the agents' tasla are assigned some
predefined levels of criticality. Therefore, when one
agent requests for help, there are some particular agcnts
obliged to help in a predefined manner. The behavior of
the agents is described below:
Agent I: Pcrforming the Most Critical Task. Never
gives up its own task to help any other agent.
Agent 2: Performing the Middle Critical Task. It only
helps Agent I if it needs help and Agent 3 is faulry. It
helps Agent 3 if Agent I does not need help.

Agent 3: Performing the Least Criticat Task. lt helps
Agent l.and Agent 2 whenever they request. It may give
up its task while helping the two more important agetrts.

Il/hat will happen in this experiment?
The most critical agent, Agent l, becomes faulty and
requests for hclp. Agent 3 srarts to help it. It will do its
own task while helping Agent l. After a few .nano
seconds, Agent 2 becomes faulty too. Now Agent 3
must bclp Agent 2 too. So it is to give up its task and
just perform the most critical tasks of the system
without which system will surely fail. After a few more
nano seconds, Agent 3 fails and since Agent 2 is faulty
too, no one helps them. When Agent 2 comes back it
helps Agent 3. But when it understands that Agent I
needs help it stops helping Agent 3. Finally all the
agents came back to the fault free states and continue
their normal actions.
Figure 3 shows the intemal states of the agents in this
experimeut. Table I and Table 2 demonstrate the
simulation results with and without help mechanisn
respectively. It is worth mentioning that in this
experiment, tasks may be lost due to two different
reasons: either helping others and losing own task or not
being helped by thc others.
In order to evaluate this method and the other strategies
introduced in this paper, a simple performance index, is
considered:

Performance =lN,C,
I

Where .l/, is the number of times agnet i ,s task is done

successfirlly, and C, is the criticality of agents's task.
According to Table l, Table 2 and the above definition,
the perfornance of the system without the helping
capability is 59o/o, while the performance of the new
system with the fixed-criticality-based help is g0%.

Agent Number of
Lost asks

due to Fault

Total Number
of tasls to be

done
I 43 85
2 26 97
3 45 103

Tabfe l: Simulation Result when there is no help
mechanisnt in the system applying the test scenario.
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Figure 3: Internal srates of the agents in the strategt based on the Agents' Criticality No Decision Making).

Table 2: Simulation Result when the agents help others with the Jixed criticality based method.
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Figure 4z Internal states of the agents in Decision-Making based Methods (Last Three Experiments)

Agent Criticality Numbcr of

Lost Tasks

Number of

Successfully
done Tasks

Number of

Tasks donc by

Itself

Number of

Tasks helpcd
by Othcrs

Totrl Numbcr

oftasks !o bc
pcrformed

Fault

Duration

I I l l 74 45 29 85 5300 NS

2 I l 0 87 57 30 97 6000 Ns

3 24 79 45 34 t03 4000 Ns

Table 3: Simulotion Reslts when the agents help others with a decision- making based on Remaining Time.
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5.2 Decislon-Making for Help based on Remaining
Time

In this experiment, the principal assumption is that the
task completion of each agcnt has thc saure degree of
imFortance for the total system and no criticality is
specified in the design time. Therefore the agents must
decide in the run time whether to help or not and if they
should help which one to be helped first in the case of
more than one faulty agent in the system. So, the agents
are given some level of knowledge about thc timing
constaints of the other agents and also their own
limitations that must be considered while deciding to
help. The agcnts' intemal states during this cxperiment
are shown in Figure 4.
Each agent while receives a help request, looks if it can
hclp. The parameters it considcrs are:
l) IQ_Task_Completion_Time (Iu own tdsk completion
time): T\is parameter is float according to the sensory
input data. The reason is that the requircd processing
time depends on the input information. This will enable
the agents to decide more dynamically.
2) Agent_I _Task_Completion_Time (The maximum time
required to compute the task of agent I on the helper's
processor.) This is a part of the knowledge of one agent
about the others.
3) Available_Time (The remaining time until the nert
data comes ir): This time parameter limits the agent to
complcte its currcnt task during a period of timc. If thc
currcnt task is not completed in this inrcrval of time, it
will be assigned a new task and the previous one will be
lost and ovcrwritten.
ln general, when one agent receives two Help Requests
from Agenli and Agenli , it will try to decide
according to this inequality:

Available_Time

My _Ta s k _C o m p I e t i o n _T i m e

A g e n r -i -Tas k -C o mp I e t i o n -T i m e

Agent j_Task_Completion_Time
If this inequality can not be satisfied, the agent wilt
think if it can hclp to just one of them:

C u n ent _T a s k _Tim e _Av ai I a b I e

IuIy _Tas k _C o m p I e ti o n _Ti m e

Agent_i_Task_Completion_Time

C u n e n t _T a s k _Ti m e _Av ai I a b I e

My _Ta s k _C o m p I e t io n _T i m e
+

A ge n t j _Ta s k _C o mp I e t i o n _T im e

Ifboth ofthese inequalities can be satisfied, the belper
agent will help the agent with a longer task completion
time. Choosing this task to perform, it will be more
probable that the other agents can help the remaining
faulty agent. Otherwise, if none of the agents can be
helped, the agent ignores the help request and just
completes its own task. It is worth mentioning that in
such a case, the faulty agent may be helped later-since
as described before ltty_Task_Completion_Time is not
fixed and when it shortens gives the agent the
opportunity to help.
In this experiment, we expect that only the faulty agent
may lose tasks if and only if the other agents do not help
it. ln other words, no healthy agent may lose its own
task any more because of helping others. This fact is the
actual reason of high loss of tasks in the previous
experiment.
The perfonnance evaluation according to the given
performance index, results in 4Vo improvemcnt in
comparison with the system uses fixed-criticality-based
method (shown in Table 2). Besides, The number of lost
tasks decreases from 33Voto LSVo.

53 Risking to Provide Help Using Firct Come Fhst
.SenedStrategy

In this experiment, agents have no pre-knowlcdge from
the coming rate of their own data and they are unable to
make a time-based decision, so they use the policy of
First Come Fint Served and actually thcy risk providing
help.
If the Frame Generator produces packets with different
rate for each agent, the describcd situation will be
simulated practically. To make the poliry more clear,
here is a scenario: If Agent 3 has to help Agent I and
Agent 2, it first completes its own task and if its new
data has not come in yet, it starS to help to the agent
whose request for help has came before the other. When
did it, if the hclp rcqucst from thc other agent rcmains
active and it has not been expired yet, it will help that
agent.
Here the acquired performancc is 75o/o. The simulation
results of this experiment are shown in Table 4.

5.4 Risking to Provide Help Using.9i ortest Job First
Strategy

In this experiment like the previous one, agents have no
estimation of their remaining time, so they have to
consider other parameters in their decision-making.
Here they consider the amount of time required for
completing one task and select the first agent to be
helped. For example if Agent I has to help Agent 2 and
Agent 3, it does this scenario: First does its own task
and then starts to help Agent 3 since is task is shorter
for it to do than that of Agent 2.
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Agenl Criticality Numbcr of

Lost Tasks

Number of
Succcssfully

donc Tasks

Number

ofTasks

donc by

lself

Number of

Tasks hclped

by Othcn

Total Number

oftasks to bc
performed

Fault Duration

I I 1 8 67 44 23 85 5300 NS
2 I 23 74 60 t4 97 6000 Ns
3 30 73 42 3 l 103 4000 Ns

Table 4: Simulation Result when the agents help others with the First Come First Served Strategl

Agent Criticality Numbcrof

Lost Tasks
Number of
Succcssfully
doncTaks

Number of

Tasks donc by
Itsclf

Number of

Tasks helpcd

bv Othcrs

Total Number

ofbsks to be
mrformal

Feult Duration

t I l4 7 l 47 24 85 5300 NS
2 I 23 74 59 l 5 97 6000 NS
3 I 32 7 l 42 29 t03 4000 Ns

Table 5: Simulation Result when the agents help others with the Shortest Job First Strategt.

Strategies Without help Fixed criticality
based

Decision Making
based on

Remainins Time

Decision-
making based
onFirst Come
First Served

Decision-
Making based

on Shortest Job
First

Performance 59o/" 8V/o 84Vo 75% 76%
Lost Tasks 4V. 33Vo l5o/o 24Yo 23o/o

Teble 6.' Evaluating four pres ented strategies

When it is completed, if the help request from Agent 2
remains active and the expiration time of the task is not
reached, it starts helping.
The time takes for one agent to complete the task of
another agent is assumed to be agent-dependent. It
means since one agcnt complctes the task of another
agent by its own capabilities, it depends on its processor
and intemal resources and may be different from the
time another agent spends to do the same task. The
performance of the system using this strategy is
computed as 76%. There is no considerable
improvement in comparison with First Come First
Served strategy, since both of them risks for help and
there is no guarantee that they will not miss their own
data whilc providing help. The detailed simulation
results of tbis experiment are shown in the Table 5.

Considering all these strategies, Table 6 summarizes the
results. It shows that as the method becomes more
flexible, the number of lost tasks decreases and the
perfonnance increases considerably. It also shows that if
the agents are aware of the remaining time and take a
time-based decision, they are more successful. This

smtegy is not impractical because in most of the real
control applications, the rate of sensory input data for
each agent is not unpredictable and is a primary
knowlcdge for them, so they can count on it and take a
more accurate decision.

6. Conclusions and Future Works

These experiments show that using a more complete
decision making mechanism is necessary. In this system
and any other multi agent system, which is designed to
utilize the help capability, the designer has to consider
different parameters to make a powerful activation
function for help processing. Using a fixed criticality-
based method and obliging the agents to help under
fault conditions regardless of their own time and
capability constraints is not proper for some
applications. Nsking and starting an action with the
hope of success, may be neither practical nor wise
unless help provision is the primary goal of the designer
under any situation.
In our future research, we intend to study some more
effective decision-making method for the agents to
process the help request.
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lmplementing the introduced methods on FPGA-based
distributed system is the next step of this study.
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