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Abstract. The first question answered in this paper is whether or not learning 
attention control in the decision space is feasible and how to develop an online 
as well as interactive learning approach for such control in this space, in case of 
feasibility. Here, decision space is formed by the decision vector of the agents 
each has allowed to dynamically observe just a subset of all available sensors. 
Attention control in this new space means active and dynamic selection of these 
decision agents to contribute in making final decision. The second debate is 
verifying the advantages of attention control in decision space over that in per-
ceptual space. According to the tight coupling of attention control and motor ac-
tion selection, in order to answer above mentioned questions, attention control 
and motor action selection are formulated in a unified optimization problem and 
reinforcement learning is utilized to solve it. In addition to the theoretic com-
parison of learning attention control in perceptual and decision space in terms 
of computational complexity, two proposed approaches are tested on a simple 
traffic sign recognition task.  

Keywords: Attention Control, Learning, Multi-modal perceptual space, Deci-
sion fusion, Mixture of Experts, Soft Decision. 

1   Introduction 

Basically, attention control can be assumed as an active intelligent filter which trims 
down the dimension of the huge input sensory space and prevents reaching it entirely 
to the further processing units. In other words, it is a must for an agent to purposefully 
reduce the computational burden of sensory input processing before performing any 
cognitive task; such as object recognition or scene interpretation.  

The great significance of attention control is in fact because of these requirements: 
reduction of probable confusion among multiple dimensions of the perceptual space, 
faster response and dealing with dynamicity of perceptual space. The mentioned dy-
namics is in sense of reliability and accuracy of multiple sensors or processing ele-
ments. These requirements in face of limited processing power necessitate a dynamic 
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attention control strategy rather than designing just a simple sensor selection algorithm. 
The tight coupling of attention control and motor action selection in a sequential deci-
sion making is another concern which makes the problem even more challenging. 
There are not enough works done in the field of learning attention while learning the 
desired behavior. It means attention control strategy is task-dependent. As a result, we 
couple motor actions with those that are performed solely for change of attention fo-
cus. The later ones are called perceptual actions and include those are mental only –
like giving more weights to color in comparison to shape for example- and the actions 
that involve control of physical sensors –such as saccadic movements. We call selec-
tion of pure motor actions decision making.  

It is clear that information bottleneck gives meaning to attention control however; 
here we raise this question that what type of information should be attentively proc-
essed? In other words, we are interested to know if attention control is restricted to 
active sensor selection or there is another information space where attention control 
can be learnt more effectively or robustly. In this paper, we chose decision space – or 
more accurately the probability vector of selecting actions- as a candidate information 
space to apply attention control in it and compare the results with those we attain in 
the sensory space. To perform the mentioned comparison, we model attention control 
as an optimization problem and choose reinforcement learning for solving this prob-
lem. The reason behind such a choice is to provide the potential for interactively solv-
ing the problem when the agent is acting in its world. By doing so, the agent learns 
the attention control strategy in concert with learning its task in the framework of ex-
pected reward maximization.  

In this paper, we first review the related works on learning attention control. After 
that, two proposed approaches are described in details. Then, we will express the test-
bed and the results taken. Finally a comprehensive discussion, conclusions and future 
works are given. 

2   Related Works 

Surely, we implicitly know what we mean by attention. But, a psychological defini-
tion may be a good starting point: focusing mind in a clear manner on one of many 
subjects or objects that may simultaneously stimulates the mind [1]. Adopting engi-
neering perspective, it can be considered as a filtering process which trims down the 
input sensory space to help us focusing on some thing which is more valuable to  
be processed, i.e., worth-focusing. Let’s look at the attention problem from action 
perspective and this means using active perception instead of processing the entire 
sensory space. This is the viewpoint we have adopted and tried to realize it through 
learning. In this section, the review of related works is done with more focus on learn-
ing aspects of attention. Unfortunately, there are a few researches on learning and 
formation of attention control; rather they are mostly related to the attention model-
ing. [2] presents an RL1 based approach in which visual, cognitive and motor proc-
esses are integrated to help an agent learn how to move its eyes in order to generate an 
efficient behavior of a human expert while reading. Using two spatial and temporal 

                                                           
1 Reinforcement Learning. 



244 M.S. Mirian et al. 

modeling parameters (fixation location of eyes as well as their fixation time) the op-
timal behavior is learned. In [3] a framework for attention control is presented which 
performs actively in high level cognitive tasks. It contains three phases: the first phase 
is learning attention control as in active perception. Then in the second phase it ex-
tracts those concepts learned previously and finally using mirror neurons it abstracts 
the learned knowledge to some higher level concepts. Continuing this work is one of 
our main motivations, but we are focused here on learning in the decision space rather 
than in perceptual space. In [4] attention control is applied in object recognition task 
but in a limited image database. The main idea is using information theoretic meas-
ures to find discriminative regions of the image in a general to specific manner. In [5], 
as a continuation of [4], a 3-step-architecture is presented which firstly extracts atten-
tion center according to information theoretic saliency measures. Then, by searching 
in pre-specified areas found from first step decides whether the object is available in 
the image and finally a shift for attention will be suggested. The final step is done 
using Q-Learning with the goal of finding the best perceptual action according to the 
search task. This research is related to our work because it also couples decision mak-
ing and attention control and uses reinforcement based learning approach. In [6] two 
approaches for attention control are presented in a robotic platform with neck, eyes 
and arms. The first approach is a simple feed forward method uses back-propagation 
learning algorithm while the second uses reinforcement learning and a finite state 
machine for state space representation. Their results confirm that the second approach 
generates better performance in terms of finding previously observed objects even 
with fewer movements in head and neck and also in attention center shift. In [7] some 
approaches based on hidden states in reinforcement learning are proposed for active 
perception in human gesture recognition. This work proposes some solutions for per-
ceptual aliasing. This problem is realized when there is a many to many correspon-
dence among environment’s state and agent’s state. In such a situation, the agent’s 
decision making has ambiguity and in order to reduce it, the agents decide to perform 
perceptual actions. This problem can be handled by merging similar (from utility per-
spective) states or splitting one state due to non-homogeneity in utility measure. The 
approaches for merging / splitting states presented in [7] are called Utile Distinction 
Memory and Perceptual Distinction Approach. Moreover, in order to handle the prob-
lem of requiring more than one shot observation, an approach called Nearest Se-
quence Matching is proposed which uses a chain of recent observations (state / action) 
to declare current state. The results show that by learning, they can find more infor-
mative set of features to attend for gesture recognition rather than just selecting them 
in a pre-specified manner. Unfortunately, it is mentioned that the computation load of 
these approaches are very high and can be problematic in real complex applications. 
In papers reviewed till now, the control policy was spatial. In [8] some biological evi-
dences are presented which show that attention can also be directed to particular vis-
ual features, such as a color, orientation or a direction of motion. They showed effects 
of shifting attention between feature dimensions, rather than specific values of a given 
feature. In one condition the monkey was required to attend to the orientation of a 
stimulus in a distant location. In a second condition it was required to attend to the 
color of an un-oriented stimulus in the distant location. Finally, inspired from Mirror 
Neuron idea in [9], there is an indirect biological support for the action-based repre-
sentation in the decision space as what we proposed in this paper. So, it can be  
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assumed that for each stimulus in perceptual space, there is a corresponding action-
based representation in the decision space and we have proposed two approaches for 
learning attention control in both spaces. Furthermore, according to the discussion 
presented by Rizzolatti in [10], there is a close relation between attention processes 
and motor planning processes. In fact, as claimed in their theory, there is a strict link 
between covert orienting of attention and programming explicit ocular movements. 

3   Our Approach 

Two approaches proposed here are based on these main concepts: Virtual Sensors and 
Decision Agents. Before going further into details, we define virtual sensor and deci-
sion agent. A virtual sensor is a processing element that gets the sensory information 
and extracts some high level features. A physical sensor can be regarded as a virtual 
sensor with the identity information processing function. According to this definition, 
attention control mechanism controls the physical sensors as well as the virtual ones, 
see Fig. 2.  

A decision agent is a processing unit that resides inside the main agent and looks at 
the world through a set of virtual sensors. Its output is a probability vector. Element i 
of that vector is the suggested probability of selecting action i by that decision agent. 
Note that each action can be a pure motor action, a perceptual one or a combination of 
both. See Fig. 3.   

As mentioned before, we have taken some primary steps to resolve the main prob-
lem of proposing a general framework for learning attention control in a dynamic and 
multi-modal perceptual space. Since, attention control and decision making are very 
closely correlated problems, we employ attention control alongside of decision mak-
ing once in a high-dimensional perceptual space and once in a decision space. There-
fore, in this paper, two models are proposed for a sequential, multi-step learning in 
each high dimensional space and the advantages and disadvantages are verified. 

To summarize, in sensory space, based on the agent’s current state, it learns which 
virtual sensors to look at in the next step in order to make the most beneficial deci-
sion, see Fig. 2. In that figure, the agent is at state S and has a set of action pairs each 
composed of a motor actions and a perceptual one; i.e. A={(aP, aM}} where A is the 
agent’s action set. In other words, the agent takes a perceptual action (aP) to select a 
virtual sensor and a motor action (aM) to affect its environment.   

Similarly, in decision space, the agent tries to find those decision agents –or local 
experts as such entities are named in multi-agent domain- to consult with to find the 
best decision, see Fig. 3. Again, in this scenario, the agent employs its perceptual ac-
tion to select a decision agent. Note that any attentive selection –either selection of a 
virtual sensor or choosing a decision agent- involves processing the related sensory 
information.  

In addition, it is worth mentioning that the selection strategy is sequential. It means 
that a selection is done after the selected entities are processed. It is also important to 
note that, similar to any motor action, each virtual sensor selection (and its process-
ing) or expert consultation has a cost and the agent needs to minimize the total cost. 
The associated cost is related to the complexity of each virtual sensor or decision 
agent.  



246 M.S. Mirian et al. 

As Fig. 2 shows, learning attention control in the sensory space is straightforward. 
The agent tries to select (or in fact to attend to) those more relevant virtual sensors to 
the task at hand. It is done implicitly by learning a mapping between the agent’s state 
and its optimum action in that state.  

Learning attention control in the decision space looks more complex however; it is 
a new approach to the complicate problem of attention control. The approach benefits 
many interesting aspects of distributed and multi-agent systems as the agent’s mind is 
composed of local decision makers each looking at a portion of sensory information. 
These local decision makers (when trained) form our local experts and the final deci-
sion of the agent can be shaped through a mixture of experts strategy. 
Although the real world can be modeled by a MDP [11] from an absolute agent’s 

point of view, our agent is a partial observer. So, we need to propose a POMDP ap-
proach. But to keep the problem manageable at this stage, we considered one coupled 
optimization problem in MDP framework. The Markov decision process provides the 
general framework to outline sequential attention for optimal decision making. A 
MDP is defined by a 4-tuple (States, A, δ, R) with state set States, action set A, prob-
abilistic transition function δ and reward function R. In each transition, the agent re-
ceives reward from a critic according to R : S × A→ R, Rt � R. The agent must act to 
maximize the utility Q(s, a). The decision process in sequential attention control is 
determined by the sequence of choices on perceptual actions - either in sensory or 
decision space- at specific states, see Fig. 1.  

 

Fig. 1. A simple view of sequential perceptual state change 

Fig. 1 simply shows the sequential change of agent’s mental state due to perform-
ing multiple perceptual actions. At first, the agent’s state is null, i.e. it knows nothing 
about the world’s state. After a while, it decides to percept dimi and its state changes 
accordingly. This continues until it can specifically decide which motor action is the 
most suitable to be performed. The following sections explain both learning models 
former in sensory space and latter in decision space. 

3.1   Approach 1- Learning Attention control in Perceptual Space: Attentive 
Sensor Selection 

In this approach, we want the agent to learn which features to attend in a state in order 
to gain maximum reward or in fact can perform the task as efficiently as possible 
from the critic’s perspective, See Fig. 2.  

Assume that the agent is allowed to use maximum m physical sensors to percept 
the environment and based on this information should perform one best action among 
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k available actions consisting of both perceptual and motor actions. Each physical 
sensor is equipped with a set of processing layers, let’s say n. As mentioned before, 
we can assume each physical sensor plus its processing layer as a virtual sensor. The 
agent can either turn on all sensors at once which is very computationally expensive, 
time-consuming and maybe redundant or it can try to build up its percept based on a 
subset of its whole sensors; here, those it has found more rewarding. This can be 
thought as a very rough definition of agent’s attention control problem. When a learn-
ing episode starts, the agent should decide whether to perform more perceptual  
actions to reduce ambiguity in its perception or just perform a motor action and ter-
minate the episode. In this setting, action and state sets (A and S respectively) are de-
fined as: 

A = {perceptual_action, null} x {motor_action, null} (1) 

S = {s = (o1, o2, …, om) : oi = fj(sensori) }    i = 1,…, m        j = 1,…, n (2) 

Where 

fj(sensori) {v1, v2, …, vf, null}  (3) 

the output value of each sensor processing takes maximum fi+1 values for sensor i 
including null when that sensor is not attended. For example, if we have a virtual sen-
sor for temperature with three fuzzy labels, a two-valued-color and a two-valued-
shape, S is: 

S= {Hot, Cold, null} x {Red, Blue, null} x {Circle, Rectangle, null}. Note that a 
learning episode start from the null state and after a number of perceptions or after a 
time, when a motor action is performed, the current episode will end. Performing per-
ceptual actions have different constant costs. This cost is a function of power con-
sumption of the sensor and the associated processing time of its processing function. 
Also, when a correct motor action is performed a positive value is assigned to it. This is 
the common strategy of Reward Function of the MDP frameworks used in both ap-
proaches. Fig. 2 is a schematic view of the proposed decision making strategy coupled 
with attention problem (from sensor selection perspective) using RL as a learning 
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Fig. 2. Schematic view of attentive sensor selection method 
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method. In Fig. 2, f1, f2,.., fn are processing functions like: dominant color finding, 
color segmentation, shape detection, straight line extraction, template matching on 
vision sensor and so on. STM is short term memory and here keeps the required pre-
sent and past observations. The agent’s state is in fact kept in STM. 

3.2   Approach 2- Learning Attention Control in Decision Space: Attentive 
Decision Fusion 

In this section, a general method for learning attention control is proposed in the deci-
sion space, see Fig. 3. Here, one simple implication from the decision space is pro-
posed. 

Again assume we have m sensors each observed by a tiny agent. These tiny agents 
are in fact our local decision makers. When they learned the decision making task 
individually in their own partial sensory space (and the learning is saturated), they 
start to propose their decisions (if the fuser asked them) and based on their non-
greedy opinions, the agent should make the best decision which is actually performing 
one action among k available actions. The agent can either consider decisions made 
by every local expert, which is not a reasonable policy, or it can learn to build up its 
decision profile based on a subset of the whole decision set and on a need basis. After 
this introduction, let’s define the decision space: 

Decision sub-space is a sub-space formed by Boltzman probabilities of se-

lecting each motor actionj  on the condition of
iSstate  (as i-th sensor concerns) when 

the learning by agenti is finished.  

It means for each partial observation done by each tiny agent, there is one selection 
probability for a motor action. This definition named “decision template” is similarly 
introduced in [12]. Putting these templates together we will find a decision profile. It 
is noticeable that instead of using greedy decisions of each agent (their hard deci-
sions) we used their soft decisions in order not to miss any probably helpful informa-
tion. The mathematical definition of this subspace is expressed here: 

∑
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in which 
iOjD | is the agenti’s decision to select actionj on condition to the environ-

ment state Oi (which is the environment state from agenti's point of view) and 

),( jS actionstateQ
i

 is the Q-value of selecting jaction  in 
iSstate . Therefore, by 

concatenating these conditional probabilities, we will find decision template of agenti: 

[ ]
iiii OMOOO DDDD ||2|1 ...||=  (5) 

in which M is number of motor actions. The reason behind such conditional definition 
is that each decision is attached to a specific situation and the real environmental state 
is the link of the local or partial states (observed by each tiny agent). As in Attentive  
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Sensor Selection, when a learning episode starts, the agent should decide whether to 
perform more perceptual actions (consult more experts) to find a more descriptive 
state or just perform a motor action and terminate the episode. Note that a learning 
episode start from the null state and after a number of perceptions or after a time, 
when a motor action is performed, the current episode will end. Performing percep-
tual actions (consultation with experts) have different constant costs. Also, when a 
correct motor action is performed a positive value is assigned. In this setting, action 
and state sets (A and S respectively) are defined as: 

A = {perceptual_action, null} x {motor_action, null}  (6) 

S = {s = )|(),...,|(),|( 21 nullDnullDnullD OmOO } (7) 

Fig. 3 shows the learning strategy for decision making coupled with learning attention 
control in the decision space. 
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Fig. 3. The schematic view of Attentive Decision Fusion method 

4   Testbed, Evaluation Measures and Simulation Results 

In this section, first we introduce our testbed. Then the evaluation measures for com-
paring these two proposed learning strategies are defined. Finally the simulation re-
sults are given and analyzed. 

4.1   Testbed 

As a decision making problem, a simple cognitive task of Traffic Sign Classification 
is considered: “At the beginning of each episode, a single sign is shown to the agent. 
Using Attentive Sensor Selection or Attentive Decision Fusion it should decide which 
action to perform to minimize the total cost (of processing a feature or consulting a 
decision agent)”. There is a one to one correspondence between the signs and motor 
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actions to perform. This is obviously a simple classification task which may be re-
solved with no attention control policy. But, there are some reasons for selecting such 
testbed to test our basic ideas: 

• Without losing generality, any real cognitive application can be considered as a 
classification problem with a vast number of classes and different input data and it 
has the potential of extension to more complex tasks. 

• This is a primary step of our ongoing research and we need to gradually test the 
ideas and make sure if they work. Therefore, the complexity of task should be kept 
small enough in order not to dominate the learning strategy.  

• It is surely required in any real autonomous vehicle driving / assistant application 
which maybe a very good testbed for this research according to the great need to 
attention control in such applications. 

There are three virtual sensors for the agent to percept the environment:  

• Virtual Color Sensor to detect the dominant color of the sign 
• Virtual  Shape Sensor to detect the border shape of the sign 
• Virtual Content Sensor to detect the text or symbol inside the sign. 

We can consider three types of perceptual actions corresponding to attending these 
specific sensors (in Attentive Sensor Selection) or to consider the decision made by 
the agent observes these sensors (in Attentive Decision Fusion). The complexity of 
each processing function is implicitly considered in the cost of selecting that percep-
tual action. Fig. 4 shows the selected subset of traffic signs for classification. 

 
    

    

Fig. 4. Selected Traffic Signs for Recognition 

According to the selected signs, we can define: 

• C = Colors detected by Virtual Color Sensor = {Blue, Red} 
• S = Shapes detected by Virtual Shape Sensor = { , , } 
• CN = Contents detected by Virtual Content Sensor {P, 15, , , }. 

4.2   Evaluation Measures and Simulation Results 

There are two sets of measures for evaluation of the proposed approaches. The first set 
which is tightly coupled to reward function design is accumulative reward and recognition 
rate. The second set contains secondary measures to evaluate our approaches: perceptual 
steps taken after learning and required number of episodes to complete the learning. 
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Approach 1- Learning Attention control in Perceptual Space: Attentive Sensor 
Selection 
In order to show the effectiveness of the first approach, we compare it with the case 
where there is no attention control and the agent can utilize all its sensors at once. The 
results are shown in Table 1. 

Table 1. Results of Simulating Approach 1 (Attentive Sensor Selection) 

 Measures With Attention Control 
(Attentive Sensor Selection) Without Attention Control 

Recognition
Rate after 
learning

100% 100% 

perceptual 
steps
taken 

2.1 3 

Average
Reward
gained 
during
learning 

Fig. 5. The accumulative reward during learning in perceptual space

 

The results justify that if we have enough time and processing power, there is no 
need to control the attention and the agent can learn the task even more quickly as its 
state space is three times smaller. However, when the attention control is necessary, 
Attentive Sensor Selection can gain perfect recognition rate while taking smaller num-
ber of perceptual steps; which means faster response and consuming less processing 
power.  

In order to evaluate the amount of computational efficiency found by using the first 
approach, two other sets of results are also generated: 

o Learning the task in uni-modular spaces 
o Learning the task in bi-modular spaces (Color + Shape, Shape + Content and Color 

+ Content): This is when the agent has pair of fixed sensors to percept the envi-
ronment and selects its motor action accordingly.  

Table 2 shows the recognition rate of the mentioned cases as well as the average 
reward of Attentive Sensor Selection vs. fixed bi-modular selection. The results 
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clearly confirm that using Attentive Sensor Selection for attention control in the input 
sensory space can significantly enhance both the accumulative reward and also the 
recognition rate (a direct measure of success in decision-making). This is because, the 
agent autonomously and efficiently selects best pair of sensors to attend according to 
the state situated in, or maybe in some cases it pays to attend to all available sources 
to find the most rewarding decision.  

Table 2. Results of Simulating Approach 1 (comparing with fixed selection in sub-modalities 

Learning in Uni-modular Space Learning in bi-modular Space 
Color 20% Color + Shape  46% 
Shape  30% Shape + Content  80% 
Content  50% Color + Content 88% 

 
Fig. 6. The accumulative reward of Attentive Sensor Selection vs. fixed bi-modular sen-
sor selection 

 
Approach 2- Learning Attention Control in Decision Space: Attentive Decision 
Fusion 
The effectiveness of the second approach (Attentive Decision Fusion) is shown in 
comparison with the first approach (Attentive Sensor Selection). Learning in decision 
space starts with learnt pre-knowledge of each decision agent. It means, in the first 
step the decision agents learn the task in a parallel manner. Then, each proposes a 
decision vector to the main agent. The main agent uses the Max operator and selects 
the action with the highest probability value. All decision agents update their knowl-
edge knowing the selected action and received reward. The agent starts learning atten-
tion control in decision space when the first step is finished. Note that, to have a fair 
comparison with attention control in sensor space, the learning cost of the first step is  
 

1

2
3

1 

2

3
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added to the cost of attention control in the decision space. The results show that the 
agent has learned attention control in decision space however; learning attention con-
trol in decision space is slower than learning it in the sensory space. Moreover, the 
number of perceptual steps taken in decision space is larger than that in the perceptual 
space. A detailed comparison is given in the next section.  

Table 3. Results of comparing two approaches 

  
 

Attentive Sensor Selection Attentive Decision Fusion 

Recognition 
Rate(Test) 

100% 100% 

Perceptual 
Steps (Test) 

2.1 2.8 

Required  
episodes2  

1000 1900 

Average  
Reward 
(Learning) 

 
Fig. 7. The accumulative reward during learning to compare methods 

 

5   Discussions 

The results show the feasibility of attention control in decision space. There are some 
general advantages for learning in this new space. The major ones are listed below: 

• The local knowledge gained by different experts is utilized in a distributed manner 
by decision agents to make a unified and more confident decision. This is in fact 
the main justification behind any fusion algorithm.  

• Decision agents share the decision space.  So, their decisions can be verified to an-
ticipate which decision agents are redundant, which decisions are more informative 

                                                           
2 The number of episodes required to reach a perfect recognition rate. 
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and even which ones contain complementary information. It is obvious that there is 
no such information straightforward available in perceptual space. This information 
can be utilized to further reduce the learning time in decision space.  

•  By attention control in decision space, we can take advantage of diverse available 
types of learning methods for decision agents. In fact, each decision agent can use 
the most suitable learning method regardless of what methods the other ones em-
ploy. This benefit is gained because all agents share the decision space. Possibility 
of using different learning methods across decision agents enables the designer to 
use dissimilar types of information -such as training data, expert knowledge, etc- 
and sensors for training different decision agents.  

• Another issue to discuss is the fact that, transferring the attention control learning 
from perceptual space to decision space results in learning decision fusion. Deci-
sion fusion has some major advantages (like reliability, robustness and survivabil-
ity) not only because of fusion [13] but also due to its boosting characteristics. 
Schapire in [14] describes: “Boosting is a general method for improving the accu-
racy of any given learning algorithm. It refers to a general and provably effective 
method of producing a very accurate prediction rule by combining rough and mod-
erately inaccurate rules of thumb.” The reason behind the claim that our proposed 
structure for attention control in decision space implements boosting is that “while 
the performance of each local expert (decision agent) is less than or equal to 
chance, by using learning attention control we can improve the performance con-
siderably.” Despite the motioned general benefits, the proposed representation of 
the decision space seems not to be theoretically compact. This problem can be 
quantified through a simple order computation for the two approaches which 
comes in Table 4: 

Table 4. Comparing Order of State-Action for both approaches  

 In Decision Space In Feature Space 
Parameters M: Number of Motor Actions 

m: number of sensors 
f: discretization level in sensory space 
c: discretization level in decision space 
n: number of decision agents 
k: number of sensors observed by each decision agent 

Theoretical 
Order of 
States-Action 

 
M .(n fk + cn(M-1)) 

 
M. fm 

M = 9 m = n = 3 f =4 c = 10 k = 1 Example 
(Theoretical 
Number of 
State-Action) 

 
10 24 

 
576 

M. (nfk + C) 
C = number of sparse points  
in decision space   

M. fm Practical 
Number of 
State-Action 

1008     with C ≤ 100  576 
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Above computation theoretically shows that the number of states in decision 
space is very large and expresses state explosion. While, as tested in practice, the 
number of exiting states in decision space is very much fewer than cn(M-1). It means 
that the agent does not even go into most of the theoretically mentioned states. In 
other words, the space is considerably sparse. So, there is no need to reserve any 
space for non-existing states and be aware of their values; which results in reason-
able learning speed. We are not sure if the mentioned sparseness is hold such 
strongly in all practical cases. Therefore, it is one of our main concerns to find a 
more compact representation for the decision space to preferably speed up the 
learning and become robust to missing information and noise. One solution is not 
quantizing the decision space and using continuous space RL methods [15]. 

6   Conclusions and Future Works 

The proposed approaches are our primary steps taken to bold the main requirements 
of a general framework for learning attention control in a multi-modal as well as dy-
namic perceptual space during learning to perform a complex decision making task, 
such as autonomous driving which surely contains many different distracters. It is 
expected that if there were many distracters, the attention control algorithm would try 
to remove those irrelevant dimensions thus accelerate learning process considerably. 
The main outcome of the paper is to show that learning attention control is feasible in 
decision space and the results are comparable with those attained in the perceptual 
space. Learning attention control in decision space benefits some interesting advan-
tages over learning attention control in perceptual space. The major ones are sharing 
the common space (decision space) among tiny decision agents, utilizing not neces-
sary similar learning algorithms for decision agents and finally making a more confi-
dent decision. There are many extensions planned for the proposed approach and the 
most important one is finding a more compact and yet meaningful decision space to 
learn attention in it with preferably higher advantages such as faster learning speed, 
lower cost and maybe more robustness. Another extension is learning to expand the 
perceptual space in a gradual manner.  
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