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Abstract
Reinforcement learning methods are slow and inefficient in
large and continuous perceptual spaces. Discretizing such
perceptual spaces generates a large number of states which
slows down learning process. This motivates us that inspir-
ing from concept learning in humans and cognitive science
propose a framework for learning the concepts of the agent’s
functionality space in an unsupervised fashion. These con-
cepts are extracted through mapping of perceptual space’s
samples to the agent’s functionality space formed based on
the agent’s action-values. The proposed approach is realized
in an online categorization problem and the results confirm
that applying proposed learning method achieves a good gen-
eralization and high efficiency in terms of average reward and
speed of convergence in the spaces with relational and asso-
ciative concepts. In addition, this approach may help hetero-
geneous agents to share their abstract knowledge.
Keywords: Concept Learning, Knowledge Abstraction, Con-
cept Abstract Hierarchy, Reinforcement Learning

1. Introduction
Reinforcement learning methods are among the best choices
for interactive intelligent systems’ learning because of their
unsupervised nature. In these methods, agents learn action-
values in each state by receiving a reinforcement signal from
the environment. Another characteristic of Reinforcement
Learning methods is the ability of online learning which is
required for interacting with dynamic environments. It means
that the agent can improve its learning while interacting with
the environment and there is no need for a certain offline learn-
ing phase. These kind of methods are mainly inspired by the
way human infants learn interacting with the environment.
But, there is one more important property in human learning
which helps them to learn faster when dealing with a new en-
vironment. Researches show that, this property is the humans’
ability to extract abstract concepts from the environment dur-
ing the learning process [5]. These abstract concepts when
formed in the mind can be used in unvisited environments to
make a faster and more efficient learning. For example, a per-
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son who has learned riding a bicycle can learn faster how to
drive a car than a person with no pre-knowledge about this,
while obviously there may be no similarity in sensory spaces
of these devices.
In fact, this is because of the common abstract concepts which
exist in dealing with all types of vehicles; such as: break-
ing, accelerating and steering. These abstract concepts are not
formed in the perceptual space. In fact, it is the similarity
in functionality of different objects, situations or even stim-
uli which makes them members of the same concept in the
human mind. In other words, although the perceptual space
may be continuous and complex in real environments, often
there are few functional concepts which help the agent to gen-
eralize those learned concepts to new stimuli. Fig. 1 shows
the schematic view of stimuli prototypes formed in perceptual
space and extracted functional concepts in agent’s functional-
ity space.

Figure 1. The schematic view of prototypes and concepts
in functionality space.

In this paper, we propose a learning framework for unsuper-
vised formation of abstract concepts and their hierarchy in the
agents functionality space. By using extracted concepts and
abstract concept hierarchy formed based on those concepts,
and generalizing them to new observations, the agent can
speed up the convergence of action-values and consequently
accelerate learning in a continuous and complex perceptual
space.
The paper is organized as follows: In section 2 the definitions
and models of concepts from artificial intelligence and cogni-
tive science perspectives are reviewed, then our point of view
is mentioned. In section 3, our proposed approach for learning
functional concepts, extracting abstract hierarchy, and using
them in decision making is explained in details. Then, in sec-
tion 4, some experiments designed for evaluation of methods
as well as simulation results and some analysis are presented.



Finally, last section proposes the conclusion and future works
of this research.

2. Concepts
There are different definitions and models for concept in
the literature of artificial intelligence and cognitive science.
Among them, we based our research on the definition which
is presented by Zentall in [10], in which concepts are catego-
rized into tree classes of abstraction:

Perceptual concepts: in this abstraction level, the similarity
of observations in perceptual space is sufficient to map
them to one concept

Relational concepts: in this abstraction level, some kinds of
external knowledge is needed to form exact concepts in
perceptual space, although the similarity of observations
still contributes to map them to one concept.

Associative concepts: in this abstraction level, the similarity
between observations in functionality space maps them
to one concept and against the relational concepts; the
similarity of observations in perceptual space has no con-
tribution to map them to one concept.

According to Zentall’s definition [10], the concept is the
agents representation of its environment. So, the most impor-
tant points of concept learning methods are how to form that
internal representation, and how to use it in decision making.
While different perspectives of concept learning are mainly fo-
cused on learning in perceptual space [3, 4], Mobahi et al. [6]
maps perceptual concepts into best agent’s response to a stim-
ulus. They express relational concepts in perceptual space by
mirror neurons model [8, 7, 2] and the way of forming them.
In this model, abstraction is done only in one level and this
causes a bounded learning speed and generalization.
Abstraction and generalization are two important properties of
intelligent systems improving their speed and quality of learn-
ing. Ability of generalization means being able to estimate the
best response based on just a few experiments of a stimulus.
Abstraction is to extract high level concepts with no details of
observations. We can use abstract concepts, to estimate opti-
mum agent’s response to new or less observed stimuli.
In reinforcement learning methods, as the most usual online
and interactive learning methods, representation of continu-
ous space as a series of base kernels (such as RBF) is called
generalization [9]. The studies show that either when online
modification of kernels—which is a difficult process and crit-
ically affects convergence of learning—is not possible or if
concepts in perceptual space and neighborhood of associative
concepts is very scattered (and irregular), concept formation in
perceptual space without any prejudgment about their shapes,
is preferred to other methods [6, 1]. Therefore, we use clus-
tering to descritize continuous space.

3. Learning method
In the learning method, as [6], prototypes are formed by clus-
tering observations in perceptual space. By prototyping, the
continuous perceptual space is mapped to some discrete pro-
totypes. The radius of clusters is assumed to be fixed (G) for
all clusters.

As mentioned before, against other related works for concept
learning in continuous sensory space [6, 1] which define con-
cepts as the best response to the stimulus, we define concepts
in the entire functionality space (Section 3.1). The proposed
method to learn and form these concepts are explained in this
section.

3.1. Associative concepts in functionality space
According to the definition of associative concepts, similar-
ity in action-value vectors maps the prototypes to the same
concept. In other words, the concept F is composed of all
prototypes in perceptual space with almost equal action-value
vectors, defined below:

F = {s| ‖Qs −QF ‖ ≤ ε, ε ≥ 0}, (1)

in which:
Qs = 〈Q(s, a1), . . . , Q(s, am)〉, (2)

and QF stands for the functionality vector of concept F in
which the value of each action in the concept is specified.
These concepts are defined in the whole space of agent’s func-
tionality and form the zero-level concepts in hierarchy.
It is noticeable that the problem we focused on in this pa-
per is learning how to interactively categorize stimuli in an
n-dimensional continuous perceptual space. Obviously, this
can be modeled as a single step episode RL mechanism. In
other words, the agent is situated in different perceptual states
and receives a reinforcement signal after taking one of its m
predefined actions. Therefore, its next state is independent of
both its current and previous states.
The values of vector Qs is updated using the last interaction
with the environment while observing s, according to the up-
date Q-learning formula [9] which is modified for the single
step episode problem definition:

Q(s, a) = Qold(s, a) + α[r −Qold(s, a)], (3)

in which α is the learning rate and r is the received reinforce-
ment signal from the environment. The vast diversity of the
agent’s interaction with the environment by each action causes
different uncertainties in different dimensions of vector Qs.
Since the proposed concept learning algorithm is online, the
uncertainty of the vectors Qs in some dimensions may be so
high that a concept can not be formed for corresponding ac-
tions. In fact, while the learning is not yet converged in a
dimension, its corresponding concept will not be formed. In
such a situation, the concept is formed in a subspace in which
the uncertainty is less than a specific threshold, rather than the
whole functionality space.
Therefore, a more applicable definition for functional con-
cepts is proposed: A functional concept FRi

j
(the jth concept

in space Ri) as a region in agent’s functionality space (Rm) or
a subspace of that (Ri ⊂ Rm) is defined as follows:

FRi
j

= {s|
∥∥∥∥QF

Ri
j

−QsRi

∥∥∥∥ ≤ ε, ε ≥ 0}, (4)

in which:
QsRi

= 〈Q(s, ax)|x ∈ Ri〉, (5)



and QF i
j

is the functionality vector of the concept FRi
j

in the
subspace Ri.
The subspace Ri is a space in which each dimension repre-
sents an index of an action in the concept. For the sake of
simplicity, the space is represented as a set of action indices:

Rm = {1, 2, . . . ,m}, (6)
Ri = {n1, . . . , nj}, nj ∈ {1, . . . ,m}, 1 ≤ j ≤ i. (7)

3.2. Zero-level concept extraction
Zero-level concepts are extracted by clustering vectors Qs in
functionality space. As mentioned before, the vector Qs of
each prototype s has uncertainty during the learning phase.
The value of the uncertainty of Qs in dimension i shown by
σ2

s,i is reduced during learning phase as the number of exper-
iments of action ai increases or the variance of recent values
of Qs(ai) decreases. The uncertainty of the value of Qs in the
ith dimension is defined as follows:

σ2
s,i =

σ̄2
s,i

KCs,i + 1
, (8)

in which, Cs,i is the number of experiments of action ai in
prototype s, σ̄2

s,i is the variance of recent values of Qs(ai) and
K is a constant weight.
Therefore, Qs’s are fuzzy points in space Rm, also called
functional points. Clusters formed by clustering Qs’s in the
functionality space are called functional clusters. A fuzzy
distance measure is needed to calculate the distance between
functional points and also to find the center and members
of each cluster. The distance of two fuzzy points in m-
dimensional space with different fuzzinesses (uncertainties) in
ith dimension should fulfill the following conditions:

• Symmetry:
di(s, s′) = di(s′, s),

• Zero distance:

di(s, s′) = 0 ⇔ Qs(ai) = Qs′(ai),

• Effect of centers’ distance:

|Qs(ai)−Qs′(ai)| < |Qs(ai)−Qs′′(ai)| , σ2
s′,i = σ2

s′′,i

⇒ di(s, s′) < di(s, s′′)

• Effect of uncertainty:

|Qs(ai)−Qs′(ai)| = |Qs(ai)−Qs′′(ai)| , σ2
s′,i < σ2

s′′,i

⇒ di(s, s′) > di(s, s′′)

One option for distance function definition satisfying the
above conditions is:

di(s, s′) =
|Qs(ai)−Qs′(ai)|
(σ2

s,i + 1)(σ2
s′,i + 1)

, (9)

d(s, s′) =

√√√√ m∑
i=1

d2
i (s, s′), (10)

in which, s and s′ are two prototypes in perceptual space
and d(s, s′) specifies the distance of corresponding functional
points of these prototypes in functionality space. While (9)
is computed for each individual dimension, (10) is calculated
over all dimensions.
As functional points, the functional clusters have also uncer-
tainty in each dimension. The uncertainty vector of the func-
tional clusters is actually an intra-cluster distance criteria, de-
fined for the clusters with fuzzy point members. The uncer-
tainty of functional clusters depends on the scattering of fuzzy
point members and their uncertainties. The following equa-
tion defines the uncertainty value of the functional cluster C
as an average of its members’ distance to the cluster center c:

σC,i =
∑

s∈C di(s, c)
‖C‖

, (11)

in which di(s, c) is defined by (9). From each functional clus-
ter, a zero-level functional concept is formed as follows:

Rf = {i ∈ Rm|σC,i < β}, (12)
FRf

j
= 〈ci|i ∈ Rf 〉, (13)

where FRf
j

is the concept formed in subspace Rf and specifies

the value of actions in subspace Rf while has no idea about
other actions.

3.3. Abstract concept hierarchy extraction
Assume that FRi

j
and FRp

k
are two functional concepts ac-

cording to definition (4). The maximal common subspace of
Ri and Rp in which functionality vectors of two concepts are
similar (Ru) is the space in which FRi

j
and FRp

k
have an over-

lapping concept. This concept is shown by FRu
k,j

.

Ru = {x ∈ Ri ∩Rp|
∣∣∣∣QF

Ri
j

(ax)−QFR
p
k

(ax)
∣∣∣∣ ≤ ε}, (14)

QFRu
k,j

= 〈QF
Ri

j

(ax), x ∈ Ru〉, (15)

FRu
k,j

= {s|
∥∥∥QFRu

k,j

−QsRu

∥∥∥ ≤ ε, ε ≥ 0}. (16)

FRu
k,j

is a higher level concept in abstract concept hierarchy
which is formed by the similarity between FRi

j
and FRp

k
in

some action-values.
When we move upward through the hierarchy, functional sub-
space of concepts becomes smaller and consequently there
will be more related zero-level concepts. On the other hand,
a zero-level concept may be related to several higher level
concepts in different functionality subspaces. Therefore, one
many-to-many relation among zero-level concepts and higher
level concepts will be formed.
In the proposed approach for concept learning, abstract con-
cepts and their mapping to perceptual space is formed during
the online learning process. Fig. 2 shows the pseudo code of
the abstract hierarchy extraction process in which concepts in
all levels of hierarchy is formed using “is-a” relation among
them.



REPEAT
FOR each {a, b} in concepts

s = maximal subspace in which a is similar to b
c = new concept in s with action values of a (or b)
IF c is a new concept THEN

add c to current concepts
add relation “a is-a c” to hierarchy
add relation “b is-a c” to hierarchy

UNTIL no new concept was added

Figure 2. Pseudocode of the abstract hierarchy extraction
process.

3.4. Decision making based on abstract concept hier-
archy

When a stimulus of a prototype in perceptual space is ob-
served, the similarity values among its functional points and
formed concepts in functionality space are evaluated. This
similarity value is evaluated by the distance between proto-
type’s functional point and the center of functional concept
in the functionality space. Since, functional points and func-
tional concepts have the same type and defined in one space,
their distance function is defined as in (9). The only differ-
ence is that each concept may be formed in a subspace of the
whole functionality space. All concepts close to s and con-
cepts above it in the hierarchy, will be candidates to be con-
sidered in decision making process about s.
During initial observations of a prototype, when the uncertain-
ties of all actions are high, there are two strategies for action
selection. The first strategy is action selection based on action-
value vector Qs and the second strategy is to utilize abstract
concept hierarchy, if it is formed, and select an action corre-
sponding to the highest level of candidate concepts hierarchy.
After the initial phase, the action-values of the candidate con-
cepts form the final action-value vector used for the agent’s de-
cision making. The value of final action-value vector in each
dimension (action) is obtained from the concept with mini-
mum uncertainty at the corresponding action among all candi-
date concepts.
It is shown in section 4 that the strategy of action selection
based on the hierarchy in initial phase of each prototype leads
to an improvement in the results.
It is because of two reasons. The first is the agent’s tendency
to select the action with a lower risk which is actually in the
highest level of hierarchy. It seems that, this strategy is of-
ten used by humans in the real life because of a reduction in
ambiguity achieved when acting based on a higher level con-
cept. For example, when we are not sure that the new object
belongs to the concept a or b, it is better to do an action which
is rewarding in both. This action is corresponding to a higher
level concept located on top of concepts a and b in hierarchy.
The second justification for using the hierarchy is the advan-
tage of finding a proper starting policy in agent’s action selec-
tion over learning from scratch. In this strategy, even if the
selected action is not rewarding, this action selection causes
the pruning of candidate concepts’ hierarchy for the coming
experiments of the prototype.

Fig. 3 shows the flowchart of the learning approach.
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Figure 3. The decision making flowchart of the proposed
approach.

4. Experiments and results
Test data sets are generated in an abstract n-dimensional con-
tinuous space to evaluate the proposed approach and to com-
pare it with relational model of concept learning proposed in
[6].
As mentioned before, each stimulus is an n-dimensional vec-
tor representing a point in the agents perceptual space. In data
set generation, it is assumed that all stimuli in the perceptual
space can be represented by p prototypes. This way, each pro-
totype stands for all its surrounding stimuli and maps to one
concept in the agents mind. Stimuli around each prototype are
generated using a normal distribution around it with 3σ = G
in order to guarantee that about 90% of stimuli will be placed
inside a mass cluster with radius G.
Let m = 14, n = 2 and p = 100 and assume there are 8 dif-
ferent functional concepts in the environment. This means that
there are 100 prototypes in perceptual space mapped to 8 func-
tional concepts in agents 14-dimensional functionality space
in which the values of all actions in each concept are speci-
fied. Note that the number of prototypes (p), and the number
of concepts, are assumed unknown by the agent.
The learning process is performed on about 10000 randomly
generated episodes in each experiment. Each episode is con-



sisted of: generating a stimulus as explained, presenting the
stimulus to the agent, selecting an action by the agent, and
giving appropriate reinforcement signal to the agent. This re-
inforcement signal depends on the selected actions value in
the corresponding concept of the given stimulus.
The experiments are iterated over several data sets generated
in different perceptual spaces and different arrangements of
prototypes in each perceptual space. Then the results are av-
eraged and shown in the charts.

4.1. First experiment
In this experiment, we use different data sets to find those
situations in which the proposed functional concept extrac-
tion method overcomes relational model for concept extrac-
tion proposed in [6]:

1. In this data set, neighbor prototypes in perceptual space,
have dissimilar functionalities. This data set models the
associative concepts.

2. In this data set, neighbor prototypes in perceptual space,
have similar functionalities. This data set models the re-
lational concepts.

3. In this data set, the prototypes in perceptual space ran-
domly map to functionalities. This data set models the
real environment which contains relational and associa-
tive concepts.

The improvement rate of average reward gained during the
agent’s life in our approach and the approach in [6] (relational
concept learning) is plotted for three data sets (Fig. 4).

Figure 4. The improvement by the proposed approach com-
pared to relational concept extraction in three data sets of
the first experiment.

As it is shown in Fig. 4, the proposed method has shown a rea-
sonable amount of improvement in all data sets. The improve-
ment rate is lower in data set 2 and it may be because sim-
ilarity in perceptual space helps the relational concept learn-
ing method to achieve a better average reward. We claim it is
the concept formation in functionality space which makes the
ability of generalization in all data sets.
In data set 3 which is a random mapping between sensory and
functionality space, the curve is in the middle of two other data
sets. It seems that the random mapping data set generation is
more close to the model of a real environment containing both

relational and associative concepts. So, in the next experi-
ments the data sets are generated randomly in more complex
perceptual and functionality spaces.

4.2. Second experiment
In this experiment four methods of learning in same situation
of simulation are compared:

A1. The method of relational concept learning in [6].
A2. The proposed algorithm for extracting functional con-

cepts and their abstraction hierarchy during the learning
with no pre-knowledge in perceptual and functionality
spaces.

A3. The method in which the agent knows the functional con-
cepts and the abstraction hierarchy (generated by method
A2) as an abstract pre-knowledge in functionality space.
But it has no information about the perceptual space.

A4. The method is similar to method A3 but the agent’s con-
cepts and abstraction hierarchy are the ideal concepts
which are manually extracted by the supervisor.

Fig. 5 compares the learning of the agent in these four methods
in terms of their average reward during their life.

Figure 5. The average rewards of the four methods of the
second experiment during the agent’s life.

From learning speed perspective, we can compare these four
approaches in different situations. In methods A1 and A2,
the agent begins to learn the environment with the same pre-
knowledge. But the abstraction of concepts in functionality
space and extraction of abstract concept hierarchy helps the
agent in method A2 to have generalization in confronting new
or less observed stimulus.
In methods A3 and A4 the agent’s rate of learning increases
significantly. It seems that the reason is the agent’s abstract
pre-knowledge which is formed only in functionality space
and is utilized for generalization in a new perceptual space.
Comparing method A3 and method A4 shows the difference
in learning’s average reward once when we have ideal pre-
knowledge and once with the pre-knowledge that is learned
by another agent and now is shared for this agent. It is neces-
sary to pay attention to this fact that, the abstract knowledge
is only in functionality space while their sensory spaces are
completely different.



In table 1 the learning speed of four methods is shown. When
the agent arrives to 90% of its maximum average reward, the
number of passed episodes is counted and reported in the ta-
ble.

Table 1. Comparision of the learning speed of methods of
the second experiment.

Method A1 A2 A3 A4
Time to reach 90% of
maximum reward

8360 5060 1309 680

4.3. Third experiment
In this experiment, the importance of using abstract concept
hierarchy is shown. The average reward of two methods is
compared:

B1. The method is similar to method A4 of the second exper-
iment.

B2. Similar to B1, but the agent uses only functional concepts
and ignores the abstract concept hierarchy.

These two methods are compared in Fig. 6 in term of aver-
age reward of the agent during its life. As it is shown, using
abstract concept hierarchy speeds up the learning.

Figure 6. The average rewards of the two methods in the
third experiment during the agent’s life.

One reason is that, decision making based on higher level con-
cepts in the hierarchy helps the agent to make decisions with
less ambiguity especially when the agent is very uncertain
about the real concept. Additionally, this strategy may help
to reduce ambiguity in real concept recognition, in coming
decision makings.

5. Conclusions and future works
In this research we focused on a new space in which concepts
have more suitable and compact representations. This space
is the agent’s functionality space. In this space, each point is
an action-value vector and its neighborhood contributes to the
same concept too. In fact, extremely distant points in percep-
tual space which belong to one concept, map to neighboring
points in functionality space. We proposed an approach for
extraction and formation of concepts in this space in an online
and autonomous manner based on a partial similarity between
these concepts which forms an abstract concept hierarchy in
functionality space.

The results show that the representation of concepts in func-
tionality space helps agent to generalize learnt concepts to
new observations and gain a better performance in comparison
with usual reinforcement learning methods, specially when
the concepts in perceptual space is associative and the simi-
larity in this space does not contribute to have the same con-
cept. Moreover, it is shown in the experiments that using the
abstract concept hierarchy, which may be extracted by other
agents or produced manually by the supervisor, accelerate the
learning process four times.
Consequently, the proposed learning framework may be used
and modified as a knowledge abstraction strategy for shar-
ing knowledge in heterogeneous agents in different sensory
spaces. One more next step is extraction of other types of re-
lations among concepts; such as: has-a for composite concepts
and affects/causes/. . . for temporal concepts. Finally, we can
add attention control in both perceptual space and functional-
ity space to help the agent to narrow down its field of view for
more efficient operation.
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